[1] G. Wang, Y. Zhang, and E. Zuazua. Observability for heat equations with time-dependent analytic memory. Arch. Ration. Mech. Anal. 248 (2024), Paper No. 115.
[2] G. Wang, Y. Zhang, and E. Zuazua. Flow decomposition for heat equations with memory. J. Math. Pures Appl. 158 (2022), 183-215.
[3] G. Wang, M. Wang, C. Zhang, and Y. Zhang. Observable set, observability, interpolation inequality and spectral inequality for the heat equation in R^n. J. Math. Pures Appl. 126 (2019), 144-194.
[4] G. Wang, M. Wang, and Y. Zhang. Observability and unique continuation inequalities for the Schrödinger equation. J. Eur. Math. Soc. (JEMS) 21 (2019), no. 11, 3513-3572.
[5] G. Wang, D. Yang, and Y. Zhang. Time optimal sampled-data controls for the heat equation. C. R. Math. Acad. Sci. Paris 355 (2017), 1252-1290.
[6] G. Wang and Y. Zhang. Decompositions and bang-bang properties. Math. Control Relat. Fields 7 (2017), 73-170.
[7] E. Trélat, L. Wang, and Y. Zhang. Impulse and sampled-data optimal control of heat equations, and error estimates. SIAM J. Control Optim. 54 (2016), 2787-2819.
[8] Y. Zhang. Unique continuation estimates for the Kolmogorov equation in the whole space. C. R. Math. Acad. Sci. Paris 354 (2016), 389-393.
[9] G. Wang, Y. Xu, and Y. Zhang. Attainable subspaces and the bang-bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53 (2015), 592-621.
[10] Y. Zhang. Two equivalence theorems of different kinds of optimal control problems for Schrödinger equations. SIAM J. Control Optim. 53 (2015), 926-947. |